

CivPlan Pty Ltd ABN 49 620 926 114 CivPlan Consulting Pty Ltd ABN 79 157 731 912 Sydney Office: 152 Sailors Bay Rd, Northbridge, NSW, 2063 South Coast Office: 390 Princes Hwy, Bomaderry, NSW, 2541 T: 1800 318 052 E: info@civplan.com.au W: www.civplan.com.au

Water Sensitive Urban Design Report

515 Crookwell Road, Kingsdale, NSW

Lot 103 & 104 DP 1007433

Planning Proposal – Large Lot Residential Development

LGA: Goulburn Mulwaree Council

Report No: 21024CC-003 Revision: 1 Site Inspection / Field Work Date: 6th October 2021 Report Date: 22nd May 2022

John Weil Principal Civil Engineer BEng(Hons) MIEAust CPEng NER Ph: 0408 581 227

Author and Document Control:

Field / Design Work By:	Written By:	Reviewed / Approved By:
Josh Eves	John Weil	John Weil
Civil Engineer	Principal Civil Engineer	Principal Civil Engineer

Record of Distribution:

Туре	Report No. & File	Status	Revision	Date	Prepare For
Electronic	21024CC-003	Approval	0	2 nd March 2022	Council
Electronic	21024CC-003	Approval	1	22 nd May 2022	Council

References:

- Goulburn Mulwaree Council Development Control Plan 2009
- Goulburn Mulwaree Council Design Specification 2013
- Australian Rainfall & Runoff A Guide to Flood Estimation 2019
- Landcom Managing Urban Stormwater Soil and Construction Volume 1 (4th Edition 2004) known as the "blue book".
- WaterNSW NorBE Assessment Guidelines 2015
- WaterNSW NorBE User Guide for Consultants 2015
- WaterNSW Using MUSIC in Sydney's Drinking Water Catchments 2012
- WaterNSW Development in the Sydney Drinking Water Catchment Water Quality Information Requirements June 2018
- AS/NZS 1547:2012 On-site Domestic Wastewater Management
- WaterNSW (2019) Designing and Installing On-Site Wastewater Systems. A Sydney Catchment Authority Current Recommended Practice.
- Environment & Health Protection Guidelines: On-site Sewage Management for Single Households (1998)

Contents

1.	Purpose and Scope	4
	1.1 Purpose and Scope	4
2.	Project Overview	6
	2.1 The Site	6
	2.2 Proposed Development	6
	2.3 General Geology	7
	2.4 Surface Topography	7
	2.4 Rainfall Data, Surface Hydrology & Sub-Surface Hydrogeology	7
	2.5 Groundwater	9
	2.6 Site Study Area Catchment Analysis	9
3.	Onsite Wastewater Management	12
	3.1 Overview	12
	3.2 Site Assessment	12
	3.3 Soil Assessment	13
	3.4 Effluent Loading	16
	3.5 Treatment System	16
	3.6 Disposal Method	17
	3.7 Water & Nutrient Balance	18
	3.8 Onsite Wastewater Capability Summary	19
4.	Stormwater Quality Management	19
	4.1 Objectives	19
	4.2 Water Quality Modelling and Climate Data	20
	4.3 Water Quality Approach & Catchment	21
	4.4 Treatment Measures	22
	4.5 Treatment Effectiveness	23
	4.6 Water Quality Capability Summary	24

Appendices:

- Appendix A: ALS Testing Results
- Appendix B: Borehole Logs
- Appendix C: Calculations
- Appendix D Disposal System Standard Drawings

1. Purpose and Scope

1.1 Purpose and Scope

This report has been prepared for Precise Planning Pty Ltd on behalf of Alimaco Pty Ltd to assess the site constraints, limitations and opportunities for the implementation of Water Sensitive Urban Design (WSUD) measures to the planning proposal at 515 Crookwell Road, Kingsdale, NSW. This report will assess the following components that effect the overall WSUD strategy:

- Onsite wastewater management
- Stormwater quality management

The site is located inside of the WaterNSW Catchment Area and this assessment has been prepared in accordance with the standards and guidelines listed in the references on page 2 of this report.

Onsite wastewater management analysis will be undertaken in accordance with relevant local, state, and federal standards and guidelines (listed in the references), to achieve a nutrient and water balance to enable a neutral or beneficial (NorBE) water quality outcome.

Stormwater quality analysis will be undertaken in accordance with WaterNSW guidelines to achieve a NorBE water quality outcome using the Model for Urban Stormwater Improvement Conceptualisation (MUSIC) software.

A detailed site investigation was carried out on Tuesday the 6th October 2021 by John Weil, a suitably qualified and experience civil engineer.

Figure 1: Site Location - NSW Imagery (SIX Maps)

Figure 2: NSW Topography (SIX Maps)

Figure 3: Developable Land & Catchment Analysis

2. Project Overview

2.1 The Site

The site is located on Lot 103 & 104 DP 1007433 at 515 Crookwell Road, Kingsdale, NSW and is within the Goulburn Mulwaree Council and the WaterNSW catchment area. Access to the site is via an unpaved driveway from Crookwell Road leading to a dwelling and associated sheds and grain storage silos in the centre along the eastern boundary.

Lot 103 DP 1007433 has an approximate area of 90.97ha and lot 104 74.19ha. The developable land area of the site only (figure 3) is being assessed for this report, which is 54.68ha. This area is being considered due to the catchment bypassing nearby Sooley Dam to the west and flowing directly towards the Wollondilly River, downstream of the dam. The area is generally undulating and dips at approximately 6-7% falling from the northern extent at approximately RL 685 to RL 670 approximately 760m to the south.

The property has a driveway leading from Crookwell Road on the eastern boundary to the main dwelling and extended driveways leading to multiple large rural storage sheds and silos west and north of the dwelling. Further north, a gravel road leads to additional rural sheds and fenced stock yards. The remainder of the property is divided and fenced paddocks for different purposes, including for sheep grazing and cropping. A paddock to the south of the dwelling contains a bore (ID: GW050231).

The remainder of the rural property is divided and fenced into paddocks used for multiple purposes including sheep grazing and cropping. The site is zoned as RU6 Transition C3 Environmental Management under the Goulburn Mulwaree Local Environmental Plan (2009).

Property Address	515 Crookwell Road, Kingsdale, NSW
Title Id	Lot 103 & 104 DP 1007433
Ownership	Alicamo Pty Ltd
Local Government Area	Goulburn Mulwaree
Current use	Rural
Land Zoning	C3 Environmental Management
Proposed use	Large Lot Rural Residential
Council	Goulburn Mulwaree Council

Surrounding land use is rural farmland (stock & cropping), with Goulburn residential township located to the southeast 5km. Sooley Dam is located west of the site 1.05km from the western boundary.

2.2 Proposed Development

The site at 515 Crookwell Road, Kingsdale is a planning proposal to change the zoning to enable the development of approximately 23 large rural residential allotments with a minimum lot size of 2ha. The conceptual layout for this planning proposal is shown in figure 4.

Figure 4: Conceptual Layout

2.3 General Geology

The 1:100,000 geology sheet for Goulburn indicates that the site is underlain by feldspar-lithic quartz sandstone with minor interbeded siltstone and mudstone of the Mount Fairy Group with Bishopthorpe suite dolerite formed in the Siluro-devonian.

2.4 Surface Topography

The area is generally undulating and dips at approximapagetely 6-7% falling from the northern extent at approximately RL 685 to RL 670 approximately 760m to the south.

2.4 Rainfall Data, Surface Hydrology & Sub-Surface Hydrogeology

Rainfall on the site area considered to be developed will naturally follow the slope of the site and drain to the south, towards the Wollondilly River.

As the site is within the WaterNSW Catchment area, data has been drawn from the WaterNSW catchment weather stations, with the site being located within Zone 3 for evaporation & Goulburn TAFE for rainfall, as shown in Table 1 below (reference figure 2.1 table 2.1 and 2.2 in the document *Designing and Installing On-Site Wastewater Systems v.2 by WaterNSW dated Nov 2019*).

Month	Mean Monthly Rainfall (mm)	Median Monthly Class A Pan Evaporation (mm)	Rainfall – Evaporation (mm)
January	61.9	187	-125.1
February	60.7	145	-84.3
March	55.6	124	-68.4

April	44	79	-35.0
May	40.7	51	-10.3
June	53.1	34	19.1
July	40.8	39	1.8
August	52.5	61	-8.5
September	48	88	-40.0
October	52.5	123	-70.5
November	62.6	146	-83.4
December	62.8	185	-122.5
Annual	635.2	1262	-626.8

Table 2: Rainfall Data: WaterNSW Weather Station Data: Goulburn TAFE / Zone 3

The rainfall data used to undertake the required modelling, analysis and design has been drawn from the ARR Data Hub and BoM using Australian Rainfall and Runoff 2019 (ARR19). The data drawn from the nearest point to the subject site was a Latitude 34.7479 South and Longitude 149.7375 East.

Figure 5: IFD Design Rainfall Intensity Data: Latitude 34.7375 South and Longitude 149.7375 East

Hydrogeology Map of Australia: Commonwealth of Australia (Geoscience Australia) describes aquifers on and around the site as porous with extensive aquifers of low to moderate productivity. It is expected that a seasonal perched groundwater table will exist on the site at the interface between the soil and the underlying bedrock. If present, the groundwater would typically follow the topography of the Site and drain towards the south as per the surface water runoff.

2.5 Groundwater

There are two bores located on the site. GW035919 in the north-western section of site and was drilled to 23.50m for domestic stock purposes. GW050231 is located near the eastern boundary of the site. This water-bore is for domestic stock purposes also and was drilled to 38m depth on 1st February 1980. There are four bores off site that are within a 500m vicinity. GW110284 to the north, GW049127 and, GW043667 to the east and GW049788 to the south (Figure 6).

Figure 6: Groundwater Bore Locations (MinView).

2.6 Site Study Area Catchment Analysis

As part of the initial strategy for this planning proposal, Goulburn Mulwaree Council released an *Urban* and *Fringe Housing Strategy document dated 28th July 2020 and adopted on the 21st July 2020* (*Resolution 2020/261*). As part of Alimaco's submission to this document, a preliminary catchment analysis undertaken to determine the extent of the site that naturally drains away from the Lake Sooley catchment. The outcome of this analysis can be seen in figure 3, which is also consistent with the SIX Maps topographical output shown in figure 2.

Subsequent advice from WaterNSW dated 9th August 2021 (ref. no. DOC2021/0690662), expressed concerns that *"based on our drainage mapping and the SLWCA, part of the area identified by*

BlueWater Catchment Analysis Report as drainage away from Lake Sooley actually appears to drain northwards towards Bumana Creek and then into Lake Sooley".

The SLWCA referred to above is shown in figure 7 below. Based on detailed catchment analysis, undertaken using detailed site survey, LiDAR and satellite generated terrain models, as well as detailed site inspections, there is an error relating to this document's mapped watercourse flow analysis, which has been visually shown in figures 8 and 9.

Figure 7: SLWCA Provided by WaterNSW

Figure 8: Watercourse Mapping Error

Figure 9: NSW Topography (SIX Maps) with Mapped Watercourses

3. Onsite Wastewater Management

3.1 Overview

The site is to be assessed for its suitability to implement onsite wastewater management treatment systems and disposal methods for the proposed large lot rezoning, noting that the site is within the WaterNSW catchment area. The specific standards and guidelines for this assessment are:

- AS/NZS 1547:2012 On-site Domestic Wastewater Management
- WaterNSW (2019) Designing and Installing On-Site Wastewater Systems. A Sydney Catchment Authority Current Recommended Practice.
- Environment & Health Protection Guidelines: On-site Sewage Management for Single Households (1998)

3.2 Site Assessment

The table below, in accordance with *Environment & Health Protection Guidelines: On-site Sewage Management for Single Households (1998) table 4,* outlines the site assessment ratings for the suitability of this stie for onsite wastewater management:

Feature	Capable	Marginal	Unsuitable	Site
	(minor limitation)	(moderate limitation)	(major limitation)	
Flood Potential				
EMA	Above 1 in 20	-	-	Capable
	year flood level			
Treatment System	Above 1 in 100	-	-	Capable
	year flood level			
Exposure	High sun and	Moderate sun	Low sun and wind	Capable
	wind exposure	and wind	exposure	
		exposure		
Slope (%)				
Surface irrigation	0-6	6-12	>12	Capable
Sub-surface irrigation	0-10	10-20	20 >20	
Absorption system	0-10	10-20	>20	Capable
Landform	Hill crest, convex	Concave side	Drainage plains and	Capable
	side slope, plains	slopes and	incised channels	
		footslopes		
Run-on and upslope	None – low	Moderate	High – diversion	Capable
seepage			not practical	
Erosion potential	No sign of erosion	-	Signs of erosion	Capable
Site drainage	No sign of surface	- Signs of surface		Capable
Groundwater	dampness		dampness	
Fill	No fill	Fill present	-	Capable
Buffer distance	See relevant LGA	See relevant	See relevant LGA &	Capable
	& Authority	LGA & Authority	Authority tables	
	tables	tables		
Land area	See relevant LGA	See relevant	See relevant LGA &	Capable
	& Authority	LGA & Authority	Authority tables	
	tables	tables		

Rocks and rock outcrops (% of land surface)	<10%	10-20%	>20%	Capable
Geology / Regolith	-	-	Major geological	
			discontinuities,	Capable
			fractured or highly	
			porous regolith	

Based on the above site assessment criteria in table 3, there are no significant limitation to the site conditions for application of an onsite wastewater management system. Noting the following specific comments in relation to the site:

- EMAs to each lot should be sighted in areas where the slope is between 0-10%, noting there is an isolated steep zone of >20% in the south-eastern corner of the site, parallel to Crookwell Rd, see the shaded area in figure 4
- Buffer distances for EMAs to each lot need to comply with the requirements set out in WaterNSW (2019) Designing and Installing On-Site Wastewater Systems. A Sydney Catchment Authority Current Recommended Practice table 2.6 & Environment & Health Protection Guidelines: On-site Sewage Management for Single Households (1998) table 5
 - \circ $\,$ 40m buffer from intermittent watercourses and dams as shown in figure 4.
 - It should be noted that the mapped watercourses shown in figure 2 and 4 of this report have been inspected and confirmed as intermittent with no defined bed or banks.
- The soil depth to the site is generally >1m to enable effective disposal of effluent via subsurface methods, with only very minor localised areas having less soil depth.
- No permanent or perched groundwater was encountered within 3m of the surface during site investigations.

3.3 Soil Assessment

Soil permeability is calculated in accordance with AS/NZS 1547:2012 Table 5.1 with indicative permeability rates aligned to the soil category, texture and structure. The design irrigation/loading rate (DIR/DLR) is determined from AS/NZS 1547:2012 Table 5.2 (figure 10 below).

	TABLE 5.2 SOIL CATEGORIES AND RECOMMENDED DESIGN IRRIGATION/LOADING RATES (DIR/DLR) FOR LAND-APPLICATION SYSTEMS											
					Desig	gn irrigation/lo	ading rate (DI	R/DLR) (mm/d	ау)			
Soil	Foil		Indicative	Trenche	s and beds (see	Table L1)	ETA/ETS	Drip and				
Category	texture	Structure	permeability (K _{nat}) (m/d)	Primary tre	ated effluent	Secondary	beds and	spray	irrigation	(basal area)		
				Conservative rate	Maximum rate	treated	(Table L1)	(Table M1)	(Table M1)	(Table N1)		
1	Gravels and sands	Structureless (massive)	> 3.0	(see Note 1	1 of Table L1 for [)LR values)		5	(see Note 3 of Table M1)	32		
_	Sandy	Weakly structured	> 3.0			,		(see Note 2				
2	loams	massive	1.4 - 3.0	15	25	50	(see Note 4 of Table L1)	4	24			
		High/ moderate structured	1.5 - 3.0	15	25	50		4 (see Note 1 of Table M1)	4 (000 Note 1		24	
3	Loams	Weakly structured or massive	0.5 – 1.5	10	15	30]		3.5	16		
		High/ moderate structured	0.5 - 1.5	10	15	30	12	- 3.5 (see Note 1 - of Table M1)				16
4	Clay loams	Weakly structured	0.12 - 0.5	6	10	20	8		3	8		
		Massive	0.06 - 0.12	4	5	10	5		of table wit)		(see Note to Table N1)	
		Strongly structured	0.12 - 0.5	5	8	12	8	-		8		
5	Light clays	Moderately structured	0.06 - 0.12		5	10		3 (see Note 1 of Table M1)	2.5 (see Note 4			
		Weakly structured or massive	< 0.06	1		8	5		of lable M1)			
		Strongly structured	0.06 - 0.5]			(see Notes 2, 3, and 5		(see Note to Table N1)			
6	Medium to heavy clays	Moderately structured	< 0.06	(see No	otes 2 and 3 of Ta	able L1)	of Table L1)	(see Note 2	(see Note 3 of Table M1)			
	Weakly structured or massive	< 0.06]				or rable MT)	, í				

Figure 10: Soil Categories

From the field work conducted, testing (see appendix A) and analysis of the borehole logs (see appendix B) the indicative permeability and design irrigation/loading rates (DIR/DLR) were determined as follows in Table 4 and 5.

Soil Zone	Soil Category	Soil Texture	Structure	Indicative Permeability (K _{sat}) (m/day)	Design Irrigation Rate (mm/day)
Topsoil (0-0.3m)	3b	Silty loams	Weak	0.5-1.5	4.0
Subsoil (0.3-1.0m)	5b	Light clays	Mod	0.05-0.12	3.0

Table 4: Design Irrigation Rate

Soil Zone	Soil Category	Soil Texture	Structure	Indicative Permeability (K _{sat}) (m/day)	Design Loading Rate (mm/day) (Secondary Effluent)
Topsoil (0-0.3m)	3b	Silty loams	Weak	0.5-1.5	30
Subsoil (0.3-1.0m)	5b	Light clays	Mod	0.05-0.12	10

Table 5: Design Loading Rate

From the samples taken from the test pits, alkalinity and electrical conductivity tests were undertaken to determine any chemical constraints to onsite wastewater disposal. The dispersivity of the site soils were determined by undertaking the Modified Emerson Aggregate Test in accordance with AS/NZS 1547:2012 Appendix E7. Summary of results can be found in table 6.

				51	L5 Crookwe	ell Road,	Kingsdale,	, NSW					
					c <mark>m</mark>)	Exc	hangeabl	e Cations	(meq/10	00g)	ercent		acity
Sample Number	Depth (m)	рН	EC (µS/cm)	Moisture Content (%)	Resistivity at 🌫 °C (ohm	Exchangeable Calcium	Exchangeable Magnesium	Exchangeable Potassium	Exchangeable Sodium	Cation Exchange Capacity	Exchangeable Sodium P	Sulfate as SO4 (mg/kg)	Phosphate Sorption Cap (mg/kg)
LOR	-	0.1	1	1	250	0.1	0.1	0.1	0.1	0.1	0.1	10	250
Limits	-	-	4000	-	-	-	-	-	0-5	>15	-	-	>800
BH001/1	0.1	5.1	27.0	-	-	3.9	2.1	0.4	<0.1	6.6	1.1	-	-
BH001/2	0.5	6.8	41.0	-	-	7.2	14.9	0.3	0.6	23.0	2.4	-	-
BH001/3	1.0	7.9	87.0	-	-	-	-	-	-	-	-	-	-
BH002/1	0.1	6.1	30.0	-	-	5.5	3.6	0.6	<0.1	9.8	0.8	-	-
BH002/2	0.5	7.2	31.0	-	-	11.3	14.0	0.3	0.4	26.0	1.6	-	-
BH0B1/1	0.1	6.4	27.0	-	-	11.9	11.8	0.2	0.6	24.4	2.3	-	-
BH0B1/2	0.5	8.6	37.0	17	-	9.1	13.8	0.2	2.3	25.3	9.2	<10	1290
BH0B1/3	0.8	9.1	313.0	-	-	7.1	14.8	<0.2	2.9	25.0	11.6	-	-
BH0C1/1	0.1	6.9	27.0	-	-	1.8	0.8	0.5	<0.1	3.1	0.8	-	-
BH0C1/2	0.5	7.6	60.0	11.5	-	1.8	1.9	2.0	<0.2	5.7	<0.2	20.0	1710
BH0C1/3	0.8	7.5	102.0	-	-	-	-	-	-	-	-	-	-
BH0D1/1	0.1	6.2	22.0	-	-	9.0	4.2	0.1	0.2	13.6	1.3	-	-
BH0D1/2	0.5	7.6	45.0	19.3	-	7.1	12.3	0.2	0.7	20.4	3.5	10.0	1780
BH0E1/1	0.1	6.4	16.0	-	-	2.1	0.2	<0.1	<0.1	2.5	2.9	-	-
BH0E1/2	0.5	5.8	46.0	12.4	-	2.2	4.3	0.1	0.6	7.2	8.1	50.0	1370
BH0E1/3	0.8	6.8	111.0	-	-	-	-	-	-	-	-	-	-
BH0F1/1	0.1	6.2	16.0	-	-	3.1	0.4	<0.1	<0.1	3.6	1.3	-	-
BH0F1/2	0.5	6.5	48.0	16.1	-	5.3	5.8	0.2	0.3	11.7	2.8	40.0	-
BH0G1/1	0.1	5.5	18.0	-	-	2.2	0.3	<0.1	<0.1	2.7	2.1	-	-
BH0G1/2	0.5	6.4	20.0	9.4	-	3.2	1.6	0.1	<0.1	5.0	1.5	10.0	-
EC-	EC- Electrical Conductivity TSS- Total Soluble Salts												

Table 6: Tabulated NATA Laboratory Results

The table below, in accordance with *Environment & Health Protection Guidelines: On-site Sewage Management for Single Households (1998) table 6*, outlines the soil assessment ratings for the suitability of this stie for onsite wastewater management:

Feature	Capable	Marginal	Unsuitable	Subject Site
	(minor	(moderate	(major	
	limitation)	limitation)	limitation)	
Depth to bedrock				
Surf/Sub-Surf Irrigation	>1.0	0.5-1.0	<0.5	>1.5 (Capable)
Absorption Systems	>1.5	1.0-1.5	<1.0	>1.5 (Capable)
Depth to water-table				
Surf/Sub-Surf Irrigation	>1.0	0.5-1.0	<0.5	>1.0m (Capable)
Absorption Systems	>1.5	1.0-1.5	<1.0	>1.5m (Capable)
Soil permeability category				
(AS/NZS1547)				
Surf/Sub-surf Irrigation	2b, 3 & 4	2a & 5	1&6	Cat 5b (Marginal)
Absorption Systems	3 & 4	-	1, 2, 5 & 6	Cat5b (Unsuitable)
Course fragments (%)	0-20	20-40	>40	0-20% (Capable)
Bulk density (g/cm ³)				
Sandy loam	<1.8	-	>1.8	
Loam & clay loam	<1.6	-	>1.6	Cat 5b (Capable)
Clay	<1.4	-	>1.4	
рН	>6.0	4.5-6.0	-	(Capable)
Electrical Conductivity	<4	4-8	>8	(Capable)
(dS/m) (1dS/m = 1000µS/cm)				
Sodicity (Exchangeable Sodium Percent)				
Surf/Sub-Surf Irrigation	0-5	5-10	>10	(Capable)
(0-0.4m)				
Absorption Systems (0-1.2m)	0-5	5-10	>10	(Unsuitable)
Cation Exchange capacity				
(cmol ⁺ /kg) _ (meq/100g)				
Surf/Sub-Surf Irrigation	>15	5-15	<5	(Capable -
(0-0.4m)				Marginal)
Phosphorus sorption (kg/ha)				
Surf/Sub-Surf Irrigation	>6000	2000-6000	<2000	>6000 kg/ha based
0-1m				on 0.5m @
				1500kg/m ³
				(Capable)
Modified Emerson				
Aggregate Test	Class 1	Class 2	Class 3 & 4	Class 1 (Capable)
(dispersiveness)				

Table 7: Soil Assessment Criteria

Based on the above soil assessment criteria in table 7, the most suitable onsite wastewater management system for each individual lot would be a Department of Health approved *Aerated Wastewater Treatment System (AWTS) and to treat draining <u>secondary effluent</u> (using a pressure dosing system) to a drip irrigation subsurface disposal system with a good quality topsoil depth of 100-150mm.*

3.4 Effluent Loading

The site currently has a 4-bedroom dwelling. The calculations are to be based on the *WaterNSW (2019) Designing and Installing On-Site Wastewater Systems. A Sydney Catchment Authority Current Recommended Practice table 2.3,* for 4 or more potential bedrooms of **900L/d can be applied for a** *non-reticulated water supply source,* noting that this represents the peak loading.

Design wastewater loading for each potential bedroom	Reticulated / bore water	Tank water		
1-2 potential bedrooms	600L/d	400L/d		
3 potential bedrooms	900L/d	600L/d		
4 potential bedrooms	1,200L/d	800L/d		
More than 4 potential bedrooms	1,200L/d plus 150L for each additional bedroom	800L/d plus 100L/d for each additional bedroom		
Source: WaterNSW, 2015. Note: WaterNSW adopts a conservative approach for wastewater design calculations. Water saving fixtures should be standard in all new dwellings.				

Figure 11: WaterNSW (2019) Designing and Installing On-Site Wastewater Systems. A Sydney Catchment Authority Current Recommended Practice table 2.3

It is recommended that standard water reduction fixtures and low flow devices such as dual six or three litre flush toilets, water saving shower heads and taps need to be adopted.

3.5 Treatment System

Through a series of treatment and disinfection processes, the wastewater is transformed into a nonpotable secondary effluent that can be applied to a designated EMA with subsurface drip irrigation. The system will provide clarification, aeration, biological treatment, and disinfection (chlorination and/or UV treatment). The final wastewater nutrient levels for the AWTS are Total Nitrogen 20-50mg/L and Total Phosphorus of 12-18 mg/L.

The optimal location for the AWTS and if required wet weather storage tanks will need to be finalised to complement the reticulated sewer network, development site layout and EMA extents.

Of particular note:

- System must be installed in accordance with
 - o AS/NZS 1547:2012
 - WaterNSW (2019) Designing and Installing On-Site Wastewater Systems. A Sydney Catchment Authority Current Recommended Practice.
 - o Manufactures design and specifications

- The AWTS must be at least 3m from any building, 6m from in-ground pools and potable water tanks and 40m from intermittent watercourse.
- A power and communications supply will be required.
- The design of the AWTS must consider possible intermittent inflows and variable inflow quality based on the development use.

Figure 12: Typical Schematic of an AWTS

3.6 Disposal Method

The disposal method best suited to this site is an EMA of **445m² sub-surface irrigation using drip lines.** Alternatively, a smaller **EMA of 411m²** is possible although would require **wet weather storage of 2kL** to be installed.

The EMA is to be designed at the detailed design stage but must include:

- Shallow sub-surface irrigation via pressure compensating irrigation drip lines that evenly distribute effluent over the entire irrigation area, generally in up to a maximum of 400m² zones.
- Irrigation area to be designed, constructed and maintained in accordance with AS/NZS 1547:2012.
- Irrigation area to have a minimum topsoil thickness of 300mm.
- Distribution pipes should be minimum of 300mm underground (25mm uPVC or HDPE).
- Sub-surface drip lines (typically 16mm) at approximately 600mm spacing at 100-150mm deep.
- EMA and the treatment system (AWTS) must be outside of all the buffer areas indicated in section 3.2.
- EMA to be delineated by fencing or plant shrubs to prevent access via vehicles, livestock, domestic animals, and unauthorised humans.
- Signage in accordance with AS1319 indicating that the area is being irrigated with treated effluent are to be erected.

A typical example of a sub-surface irrigation system being installed can be seen in figure 13. See attached to this document Disposal System Standard Drawings at Appendix D

Figure 13: Typical Sub-Surface Irrigation System

3.7 Water & Nutrient Balance

The water and nutrient balance calculations can be found in Appendix C. The calculations are based on current best practice, literature and in accordance with the relevant guidelines listed in the references.

Of note the critical total nitrogen loading rate adopted is 65.7 mg/m²/day as opposed to the nominal loading rate of 25 mg/m²/day outlined in the Environmental Health Protection Guidelines 1998. This is derived from the paper written by Bob Patterson of Lanfax Laboratories in Armidale (Patterson, 2003) relating to critical nitrogen uptake.

The critical phosphorus loading rate adopted is $8.2 \text{ mg/m}^2/\text{day}$ as opposed to the nominal loading rate of $3 \text{ mg/m}^2/\text{day}$ outlined in the Environmental Health Protection Guidelines 1998. This is derived from the paper written by Bob Patterson of Lanfax Laboratories in Armidale (Patterson, 2001) relating to phosphorus uptake.

Parameter	Calculation Result
Estimated total nitrogen concentration (AWTS)	20 mg/L
Estimated total phosphorus concentration (AWTS)	10 mg/L
Estimated bulk soil density	1500 kg/m ³
Phosphorus sorption depth	0.5m
Phosphorus sorption capacity	1290 mg P/kg (9675 kg/ha)
Design effluent loading	900 L/day/dwelling
	(assuming non-reticulated water supply)
Design EMA	445m ² or 411m ² with 2kL wet weather storage
Nitrogen limiting EMA required	411m ²
Phosphorus limiting EMA required	274m ²

A summary of the EMA areas required for nutrient calculations is in the Table 8:

Table 8: Water & Nutrient Balance Calculations Summary

In the unlikely event of an EMA failure, due to the minimum size of the lots and capability of the site and soils, there is sufficient available area within each individual lot for reserve application areas.

To prevent failure or broken pipes and connections, adequate stormwater and groundwater drainage needs to be installed. Ag pipes need to be installed around the entire base of the tank structure with the tank backfilled with free draining material. If this cannot be achieved due to inadequate fall on the site to drain the ag pipes, the tank may need to be anchored in accordance with AS/NZS 1546.1:2008.

For sloping site with surface flows an upslope stormwater diversion drain needs to be installed to prevent ponding and pooling around the top of the tank. Appendix D of this document has a standard detailed for such a drain.

3.8 Onsite Wastewater Capability Summary

Based on the onsite wastewater capability review the following summary can be provided:

- The geology, soil characteristics, landform, land availability and climate are suitable for onsite wastewater disposal using **sub-surface irrigation**.
- An approved **Aerated Wastewater Treatment System (AWTS)** producing secondary treated effluent is recommended for each lot.
- Sub-surface irrigation with an EMA of 445m² with no wet weather storage is recommended to be employed to dispose of the secondary treated effluent to each lot. Alternatively, a smaller EMA of 411m² is possible but requires a wet weather storage area of 2kL to be installed.
- Sufficient land, including reserve application areas, is available to each of the proposal lots for secondary effluent to be disposed of and meet NorBE requirements.
- Buffer distances must be adhered to on the subject site, particularly for the mapped intermittent watercourses that present no defined beds or banks.
- It is recommended that standard water reduction fixtures and low flow devices such as dual six or three litre flush toilets, water saving shower heads and taps be adopted.
- The AWTS to each lot will require electrical and communications connections as well as quarterly inspection and maintenance.
- The AWTS and disposal system will need to be designed and installed in accordance with AS/NZS 1547:2012 by a suitably qualified and licensed manufacture and plumber respectively.
- The optimal location for the AWTS and storage tanks will need to be finalised to complement the reticulated sewer network, site layout and EMA extents.

4. Stormwater Quality Management

4.1 Objectives

The site is located within the Goulburn Mulwaree Council LGA and also WaterNSW Catchment Area and this assessment has been prepared in accordance with the standards and guidelines listed in the references on page 2 of this report.

Water quality modelling and analysis will be undertaken in accordance with WaterNSW guidelines to achieve a neutral or beneficial (NorBE) water quality outcome using MUSIC modelling software. The criteria to achieve NorBE are:

- Post-development **mean annual pollutant loads** for total phosphorus (TP), total nitrogen (TN) and total suspected solids (TSS) are to be a minimum of 10% less than the pre-developed conditions.
- Post-development **mean annual gross pollutant loads** are to be equal to or less than the predeveloped conditions.
- Post-development pollutant concentrations for total phosphorus (TP) and total nitrogen (TN) must be equal to or less than the pre-development concentrations between the 50th and 98th percentiles where runoff occurs.

4.2 Water Quality Modelling and Climate Data

The water quality modelling and analysis will be undertaken utilising Model for Urban Stormwater Improvement Conceptualisation (MUSIC) software using the WaterNSW guideline *"Using MUSIC in Sydney's Drinking Water Catchment"* and specific treatment node data provided by WaterNSW, specifically Zone 1. Figures 13, 14 and 15 show the rainfall, evapotranspiration, period and time-step details of the data used.

Figure 13: Climate Zones – Zone 1

	Rainfall/6 Minutes	Evapo-Transpiration
mean	0.010	3.210
median	0.000	2.700
maximum	12.500	5.290
minimum	0.000	1.300
10 percentile	0.000	1.320
90 percentile	0.000	5.000
	Rainfall	Evapo-Transpiration
mean annual	883	1172

Figure 14: Rainfall and Evapotranspiration Meteorological Data Statistics

Figure 15: Time Step Graph with a 6-minute time step

4.3 Water Quality Approach & Catchment

The water quality approach consists of a rural setting with implementation of roadside bioretention swales to treat the new sealed road and grassed verge within the road reserve environment. It has been assumed that there will be no concrete footpaths due to the nature of the development, which is consistent with the Traffic Impact Assessment ref 300303400 dated 20th May 2022 by Stantec Pty Ltd. The road reserve width has been set at 20m wide with a sealed asphalt carriageway width of 9m, which is consistent with the Goulburn Mulwaree Council design standards and based on the lot yield, likely to be more than the minimum requirements.

For the new dwellings, an allotment yield of 23 individual allotments fronting the new proposed roads has been proposed, noting that lots 7-8 are via a right of way access handle. The roofs to each dwelling with allowance for sheds, garages etc has been assumed at 500m² per lot. The roof systems are to be connected via the gutter drainage network to a 10kL rainwater reuse tank (RWT) with an overflow to a bioretention raingarden, with an initial sizing of 16m². Furthermore, a residual 150m² of impervious area per lot for driveways has been allocated to bypass the plumbed RWT and have treatment via raingardens (12 lots being lots 1-4, 6-8, 9-13) or the bioswale (11 lots being lots 5, 14-23) depending on the natural topography of the development area.

Figure 16 below details the pre and post development land use, catchment sizing, effective impervious areas, assumptions, and applications.

Land Use	Surface Type	Effective* Impervious (%)	Area (ha)	Comments			
Pre-Development							
Farming	Agriculture	0%	54.365	Developable Area			
Dwelling/Shed	Roof	100%	0.116	Existing dwelling and sheds			
Driveway	Unsealed road	50%	0.199	Existing unsealed driveways			
Total	-	-	54.68				
	Post-Development						
Sealed Road to bioswale	Asphalt	100%	1.53	9m wide sealed road			
Road Reserve to bioswale	Verge - Grass	0%	2.0285	20m wide road reserve			
Dwelling/Shed to RWT & Raingarden	Roof	100%	1.15	Allow 500m ² per lot (23 lots)			
Driveway to Raingarden	Unsealed road	28%	0.18	Allow 150m ² per lot (12 lots)			
Drive way to Bioswale	Unsealed road	28%	0.18	Allow 150m ² per lot (11 lots)			
Lot residual to bioswale (48%)	Rural Residential	0%	23.814	11 Lots			
Lot residual bypass (52%)	Rural Residential	0%	25.798	12 Lots			
Total	-	-	54.68				

* See WaterNSW MUSIC Guideline table 4.2

Figure 16: Site MUSIC Catchments

Note that the default MUSIC stormflow concentration parameters have been used for the modelling of the quality measures and are in accordance with WaterNSW guidelines.

4.4 Treatment Measures

The water quality treatment measures for the proposed development are:

- Road Reserve
 - \circ $\;$ Roadside bioretention swales on each side of the crowned road pavement.
 - 2500m length in total with 0.6m wide and 0.4m deep filter media
 - Nutrient removal planting
 - Underdrain present with a 0.3m submerged zone
 - Lined system
- Lots / Dwellings
 - 10kL of RWT reuse/BASIX in addition to any other requirements, such as firefighting water storage capacity and or OSD requirements (PSD/SSR).
 - Reuse rates for external use are 55kL/year/dwelling and 0.845kL/day/dwelling for internal use. This is based on the WaterNSW guidelines and average dwelling size of 4 bedrooms.
 - \circ $\;$ Bioretention raingarden connected to the RWT overflow.
 - 16m2 and 0.4m deep filter media
 - Nutrient removal planting
 - Underdrain present with a 0.3m submerged zone
 - Lined system

4.5 Treatment Effectiveness

The treatment measures and subsequent results have been compared to the requirements of NorBE as outlined in section 4.1 of this report. The results from the MUSIC modelling in accordance with the approach, catchment and treatment measures outlined are shown in figure 17 to 21.

Figure 17: MUSIC Modelling – Treatment Measures & Mean Annual Loadings Reduction

Pollutant	Units	Pre	Post	Reduction
TSS	kg/yr	4440	1290	71%
TP	kg/yr	18.1	6.39	65%
TN	kg/yr	94.6	49.6	48%
GP	kg/yr	53.7	4.04	92%

Figure 18: MUSIC Modelling – Treatment Measures & Mean Annual Loadings Reduction

Figure 19: TSS Concentration

Figure 21: TN Concentration

4.6 Water Quality Capability Summary

In accordance with the WaterNSW guideline, NorBE Assessment Guidelines 2015, it has been demonstrated that the NorBE criteria for water quality can be achieved through the use of treatment measures that are sympathetic to the rural nature of the planning proposal.

The following NorBE criteria have been met, and in the case of the treatment measures modelled and analysed, exceeded:

- The post-development mean annual pollutant loads for total phosphorus (TP), total nitrogen (TN) and total suspected solids (TSS) are to be a minimum of 10% less than the pre-developed conditions.
- Post-development mean annual gross pollutant loads are to be equal to or less than the predeveloped conditions.

 Post-development pollutant concentrations for total phosphorus (TP) and total nitrogen (TN) must be equal to or less than the pre-development concentrations between the 50th and 98th percentiles where runoff occurs. Appendix A – Laboratory Results

CERTIFICATE OF ANALYSIS

Work Order	ES2139537	Page	: 1 of 4
Client	CIVPLAN	Laboratory	Environmental Division Sydney
Contact	: Tanya Erofeev	Contact	: Customer Services ES
Address	: 390 Princes Hwy	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	Bomaderry 2541		
Telephone	·	Telephone	: +61-2-8784 8555
Project	: 515 Crookwell Road, Kingsdale	Date Samples Received	: 02-Nov-2021 10:48
Order number	:	Date Analysis Commenced	: 03-Nov-2021
C-O-C number	:	Issue Date	: 09-Nov-2021 12:01
Sampler	:		Hac-MRA NATA
Site	:		
Quote number	: EN/333		Accreditation No. 825
No. of samples received	: 6		Accredited for compliance with
No. of samples analysed	: 6		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Evie Sidarta	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Page	: 3 of 4
Work Order	: ES2139537
Client	: CIVPLAN
Project	: 515 Crookwell Road, Kingsdale

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	CR-BH0B/2	CR-BH0C/2	CR-BH0D/2	CR-BH0E/2	CR-BH0F/2
		Sampli	ng date / time	06-Oct-2021 00:00				
Compound	CAS Number	LOR	Unit	ES2139537-001	ES2139537-002	ES2139537-003	ES2139537-004	ES2139537-005
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 105-1	EA055: Moisture Content (Dried @ 105-110°C)							
Moisture Content		0.1	%	17.0	11.5	19.3	12.4	16.1
ED040S: Soluble Major Anions								
Sulfate as SO4 2-	14808-79-8	10	mg/kg	<10	20	10	50	40

Page	: 4 of 4
Work Order	: ES2139537
Client	: CIVPLAN
Project	: 515 Crookwell Road, Kingsdale

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	CR-BH0G/2	 	
		Samplii	ng date / time	06-Oct-2021 00:00	 	
Compound	CAS Number	LOR	Unit	ES2139537-006	 	
				Result	 	
EA055: Moisture Content (Dried @ 105-110)°C)					
Moisture Content		0.1	%	9.4	 	
ED040S: Soluble Major Anions						
Sulfate as SO4 2-	14808-79-8	10	mg/kg	10	 	

QUALITY CONTROL REPORT

Work Order	: ES2139537	Page	: 1 of 3
Client	CIVPLAN	Laboratory	: Environmental Division Sydney
Contact	: Tanya Erofeev	Contact	: Customer Services ES
Address	: 390 Princes Hwy	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	Bomaderry 2541		
Telephone	:	Telephone	: +61-2-8784 8555
Project	: 515 Crookwell Road, Kingsdale	Date Samples Received	: 02-Nov-2021
Order number	:	Date Analysis Commenced	: 03-Nov-2021
C-O-C number	:	Issue Date	: 09-Nov-2021
Sampler	:		Hac-MRA NATA
Site	:		
Quote number	: EN/333		Approximation No. 925
No. of samples received	: 6		Accredited for compliance with
No. of samples analysed	: 6		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Evie Sidarta	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

- LOR = Limit of reporting
- RPD = Relative Percentage Difference
- # = Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EA055: Moisture Cont	tent (Dried @ 105-110°C)(Q	C Lot: 3991825)							
ES2139537-003	CR-BH0D/2	EA055: Moisture Content		0.1	%	19.3	19.5	1.3	0% - 20%
ED040S: Soluble Majo	or Anions (QC Lot: 3991824)							
ES2139537-004	CR-BH0E/2	ED040S: Sulfate as SO4 2-	14808-79-8	10	mg/kg	50	40	0.0	No Limit

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL	Method Blank (MB)	Laboratory Control Spike (LCS) Report						
	Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)			
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
ED040S: Soluble Major Anions (QCLot: 3991824)								
ED040S: Sulfate as SO4 2-	14808-79-8	10	mg/kg	<10	750 mg/kg	98.7	80.0	120

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

QA/QC Compliance Assessment to assist with Quality Review							
Work Order	: ES2139537	Page	: 1 of 4				
Client		Laboratory	: Environmental Division Sydney				
Contact	: Tanya Erofeev	Telephone	: +61-2-8784 8555				
Project	: 515 Crookwell Road, Kingsdale	Date Samples Received	: 02-Nov-2021				
Site	:	Issue Date	: 09-Nov-2021				
Sampler	:	No. of samples received	: 6				
Order number	:	No. of samples analysed	: 6				

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Outliers : Analysis Holding Time Compliance

Matrix.	SOIL

Method		Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
				overdue			overdue
EA055: Moisture Content (Dried @ 105-110°C)							
Soil Glass Jar - Unpreserved							
CR-BH0B/2,	CR-BH0C/2,				03-Nov-2021	20-Oct-2021	14
CR-BH0D/2,	CR-BH0E/2,						
CR-BH0F/2,	CR-BH0G/2						

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL					Evaluation	n: 🗴 = Holding time	breach ; 🗸 = With	n holding time
Method		Sample Date	Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 1	05-110°C)							
Soil Glass Jar - Unpreserved (EA055)								
CR-BH0B/2,	CR-BH0C/2,	06-Oct-2021				03-Nov-2021	20-Oct-2021	x
CR-BH0D/2,	CR-BH0E/2,							
CR-BH0F/2,	CR-BH0G/2							
ED040S: Soluble Major Anions								
Soil Glass Jar - Unpreserved (ED0408	S)							
CR-BH0B/2,	CR-BH0C/2,	06-Oct-2021	03-Nov-2021	03-Nov-2021	1	03-Nov-2021	01-Dec-2021	✓
CR-BH0D/2,	CR-BH0E/2,							
CR-BH0F/2,	CR-BH0G/2							

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL	Evaluation: × = Quality Control frequency not within specification ; ✓ = Quality Control frequency within specific							
Quality Control Sample Type		Co	ount	Rate (%)			Quality Control Specification	
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation		
Laboratory Duplicates (DUP)								
Major Anions - Soluble	ED040S	1	6	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Moisture Content	EA055	1	6	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Laboratory Control Samples (LCS)								
Major Anions - Soluble	ED040S	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Method Blanks (MB)								
Major Anions - Soluble	ED040S	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard	

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C.
			This method is compliant with NEPM Schedule B(3).
Major Anions - Soluble	ED040S	SOIL	In house: Soluble Anions are determined off a 1:5 soil / water extract by ICPAES.
Preparation Methods	Method	Matrix	Method Descriptions
1:5 solid / water leach for soluble analytes	EN34	SOIL	10 g of soil is mixed with 50 mL of reagent grade water and tumbled end over end for 1 hour. Water soluble salts are leached from the soil by the continuous suspension. Samples are settled and the water filtered off for analysis.

CERTIFICATE OF ANALYSIS

Work Order	: EW2104213	Page	: 1 of 6
Client	CIVPLAN	Laboratory	Environmental Division NSW South Coast
Contact	: Tanya Erofeev	Contact	: Aneta Prosaroski
Address	: 390 Princes Hwy	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	Bomaderry 2541		
Telephone	·	Telephone	: 02 42253125
Project	: 515 Crookwell Road, Kingsdale	Date Samples Received	: 07-Oct-2021 15:12
Order number	:	Date Analysis Commenced	: 11-Oct-2021
C-O-C number	:	Issue Date	: 16-Oct-2021 08:12
Sampler	: Client, Tanya Erofeev		Hac-MRA NATA
Site	:		
Quote number	: EN/333		Accreditation No. 925
No. of samples received	: 20		Accredited for compliance with
No. of samples analysed	: 20		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Dian Dao	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Analytical work for this work order will be conducted at ALS Sydney.
- ALS is not NATA accredited for the analysis of Exchangeable Cations on Alkaline Soils when performed under ALS Method ED006.
- ED007 and ED008: When Exchangeable AI is reported from these methods, it should be noted that Rayment & Lyons (2011) suggests Exchange Acidity by 1M KCI Method 15G1 (ED005) is a more suitable method for the determination of exchange acidity (H+ + AI3+).

Page	: 3 of 6
Work Order	: EW2104213
Client	: CIVPLAN
Project	 515 Crookwell Road, Kingsdale

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	CR-BH001/1	CR-BH001/2	CR-BH001/3	CR-BH002/1	CR-BH002/2
		Sampli	ng date / time	06-Oct-2021 00:00				
Compound	CAS Number	LOR	Unit	EW2104213-001	EW2104213-002	EW2104213-003	EW2104213-004	EW2104213-005
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	5.1	6.8	7.9	6.1	7.2
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm	27	41	87	30	31
ED007: Exchangeable Cations								
Exchangeable Calcium		0.1	meq/100g	3.9	7.2		5.5	11.3
Exchangeable Magnesium		0.1	meq/100g	2.1	14.9		3.6	14.0
Exchangeable Potassium		0.1	meq/100g	0.4	0.3		0.6	0.3
Exchangeable Sodium		0.1	meq/100g	<0.1	0.6		<0.1	0.4
Cation Exchange Capacity		0.1	meq/100g	6.6	23.0		9.8	26.0
Exchangeable Sodium Percent		0.1	%	1.1	2.4		0.8	1.6

Page	: 4 of 6
Work Order	: EW2104213
Client	: CIVPLAN
Project	515 Crookwell Road, Kingsdale

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	CR-BH0B/1	CR-BH0B/2	CR-BH0B/3	CR-BH0C/1	CR-BH0C/2
		Sampli	ng date / time	06-Oct-2021 00:00				
Compound	CAS Number	LOR	Unit	EW2104213-006	EW2104213-007	EW2104213-008	EW2104213-009	EW2104213-010
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	6.4	8.6	9.1	6.9	7.6
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm	27	77	313	27	60
ED006: Exchangeable Cations on Alkaline Soils								
Exchangeable Calcium		0.2	meq/100g		9.1	7.1		1.8
Exchangeable Magnesium		0.2	meq/100g		13.8	14.8		1.9
Exchangeable Potassium		0.2	meq/100g		0.2	<0.2		2.0
Exchangeable Sodium		0.2	meq/100g		2.3	2.9		<0.2
Cation Exchange Capacity		0.2	meq/100g		25.3	25.0		5.7
Exchangeable Sodium Percent		0.2	%		9.2	11.6		<0.2
ED007: Exchangeable Cations								
Exchangeable Calcium		0.1	meq/100g	11.9			1.8	
Exchangeable Magnesium		0.1	meq/100g	11.8			0.8	
Exchangeable Potassium		0.1	meq/100g	0.2			0.5	
Exchangeable Sodium		0.1	meq/100g	0.6			<0.1	
Cation Exchange Capacity		0.1	meq/100g	24.4			3.1	
Exchangeable Sodium Percent		0.1	%	2.3			0.8	
EK072: Phosphate Sorption Capacity								
Phosphate Sorption Capacity		250	mg P		1290			1710
			sorbed/kg					

Page	5 of 6
Work Order	: EW2104213
Client	: CIVPLAN
Project	 515 Crookwell Road, Kingsdale

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	CR-BH0C/3	CR-BH0D/1	CR-BH0D/2	CR-BH0E/1	CR-BH0E/2
		Sampli	ng date / time	06-Oct-2021 00:00				
Compound	CAS Number	LOR	Unit	EW2104213-011	EW2104213-012	EW2104213-013	EW2104213-014	EW2104213-015
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	7.5	6.2	7.6	6.4	5.8
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm	102	22	45	16	46
ED006: Exchangeable Cations on Alkaline Soils								
Exchangeable Calcium		0.2	meq/100g			7.1		
Exchangeable Magnesium		0.2	meq/100g			12.3		
Exchangeable Potassium		0.2	meq/100g			0.2		
Exchangeable Sodium		0.2	meq/100g			0.7		
Cation Exchange Capacity		0.2	meq/100g			20.4		
Exchangeable Sodium Percent		0.2	%			3.5		
ED007: Exchangeable Cations								
Exchangeable Calcium		0.1	meq/100g		9.0		2.1	2.2
Exchangeable Magnesium		0.1	meq/100g		4.2		0.2	4.3
Exchangeable Potassium		0.1	meq/100g		0.1		<0.1	0.1
Exchangeable Sodium		0.1	meq/100g		0.2		<0.1	0.6
Cation Exchange Capacity		0.1	meq/100g		13.6		2.5	7.2
Exchangeable Sodium Percent		0.1	%		1.3		2.9	8.1
EK072: Phosphate Sorption Capacity								
Phosphate Sorption Capacity		250	mg P			1780		1370
			sorbed/kg					

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	CR-BH0E/3	CR-BH0F/1	CR-BH0F/2	CR-BH0G/1	
		Sampli	ng date / time	06-Oct-2021 00:00				
Compound	CAS Number	LOR	Unit	EW2104213-016	EW2104213-017	EW2104213-018	EW2104213-019	EW2104213-020
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	6.8	6.2	6.5	5.5	6.4
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm	111	16	48	18	20
ED007: Exchangeable Cations								
Exchangeable Calcium		0.1	meq/100g		3.1	5.3	2.2	3.2
Exchangeable Magnesium		0.1	meq/100g		0.4	5.8	0.3	1.6
Exchangeable Potassium		0.1	meq/100g		<0.1	0.2	<0.1	0.1
Exchangeable Sodium		0.1	meq/100g		<0.1	0.3	<0.1	<0.1
Cation Exchange Capacity		0.1	meq/100g		3.6	11.7	2.7	5.0
Exchangeable Sodium Percent		0.1	%		1.3	2.8	2.1	1.5

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(SOIL) EA002: pH 1:5 (Soils)

(SOIL) EA010: Conductivity (1:5)

(SOIL) ED007: Exchangeable Cations

(SOIL) EK072: Phosphate Sorption Capacity

(SOIL) ED006: Exchangeable Cations on Alkaline Soils

QUALITY CONTROL REPORT

Work Order	: EW2104213	Page	: 1 of 4
Client		Laboratory	: Environmental Division NSW South Coast
Contact	: Tanya Erofeev	Contact	: Aneta Prosaroski
Address	: 390 Princes Hwy	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	Bomaderry 2541		
Telephone	·	Telephone	: 02 42253125
Project	: 515 Crookwell Road, Kingsdale	Date Samples Received	: 07-Oct-2021
Order number	:	Date Analysis Commenced	:11-Oct-2021
C-O-C number	:	Issue Date	16-Oct-2021
Sampler	: Client, Tanya Erofeev		Hac-MRA NATA
Site	:		
Quote number	: EN/333		Apprediction No. 925
No. of samples received	: 20		Accredited for compliance with
No. of samples analysed	: 20		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Dian Dao	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory D	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EA002: pH 1:5 (Soils) (QC Lot: 3949224)								
EW2104213-009	CR-BH0C/1	EA002: pH Value		0.1	pH Unit	6.9	6.7	2.5	0% - 20%
EW2104213-001	CR-BH001/1	EA002: pH Value		0.1	pH Unit	5.1	5.2	0.0	0% - 20%
EA002: pH 1:5 (Soils) (QC Lot: 3949226)								
EW2104213-020		EA002: pH Value		0.1	pH Unit	6.4	6.5	1.9	0% - 20%
EA010: Conductivity	(1:5) (QC Lot: 3949225)								
EW2104213-009	CR-BH0C/1	EA010: Electrical Conductivity @ 25°C		1	μS/cm	27	26	0.0	0% - 20%
EW2104213-001	CR-BH001/1	EA010: Electrical Conductivity @ 25°C		1	µS/cm	27	23	14.8	0% - 20%
EA010: Conductivity	(1:5) (QC Lot: 3949227)								
EW2104213-020		EA010: Electrical Conductivity @ 25°C		1	μS/cm	20	18	12.2	0% - 20%
ED006: Exchangeab	e Cations on Alkaline Soils	(QC Lot: 3954682)							
EW2104213-007	CR-BH0B/2	ED006: Exchangeable Sodium Percent		0.2	%	9.2	9.4	2.2	0% - 20%
		ED006: Exchangeable Calcium		0.2	meq/100g	9.1	9.4	3.8	0% - 20%
		ED006: Exchangeable Magnesium		0.2	meq/100g	13.8	14.8	7.4	0% - 20%
		ED006: Exchangeable Potassium		0.2	meq/100g	0.2	0.2	0.0	No Limit
		ED006: Exchangeable Sodium		0.2	meq/100g	2.3	2.5	8.4	0% - 50%
		ED006: Cation Exchange Capacity		0.2	meq/100g	25.3	27.0	6.3	0% - 20%
ED007: Exchangeab	e Cations (QC Lot: 3954685)							
EW2104213-001	CR-BH001/1	ED007: Exchangeable Sodium Percent		0.1	%	1.1	1.1	0.0	0% - 50%
		ED007: Exchangeable Calcium		0.1	meq/100g	3.9	3.9	0.0	0% - 20%
		ED007: Exchangeable Magnesium		0.1	meq/100g	2.1	2.1	0.0	0% - 20%
		ED007: Exchangeable Potassium		0.1	meq/100g	0.4	0.4	0.0	No Limit
		ED007: Exchangeable Sodium		0.1	meq/100g	<0.1	<0.1	0.0	No Limit
		ED007: Cation Exchange Capacity		0.1	meq/100g	6.6	6.5	0.0	0% - 20%

Page	: 3 of 4
Work Order	: EW2104213
Client	: CIVPLAN
Project	: 515 Crookwell Road, Kingsdale

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report								
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)			
ED007: Exchangeable	e Cations (QC Lot: 3954685)) - continued										
EW2104213-017	CR-BH0F/1	ED007: Exchangeable Sodium Percent		0.1	%	1.3	1.2	0.0	0% - 50%			
		ED007: Exchangeable Calcium		0.1	meq/100g	3.1	3.2	0.0	0% - 20%			
		ED007: Exchangeable Magnesium		0.1	meq/100g	0.4	0.4	0.0	No Limit			
		ED007: Exchangeable Potassium		0.1	meq/100g	<0.1	<0.1	0.0	No Limit			
		ED007: Exchangeable Sodium		0.1	meq/100g	<0.1	<0.1	0.0	No Limit			
		ED007: Cation Exchange Capacity		0.1	meq/100g	3.6	3.6	0.0	0% - 20%			
EK072: Phosphate So	orption Capacity (QC Lot: 3	947145)										
EB2127980-001	Anonymous	EK072: Phosphate Sorption Capacity		250	mg P sorbed/kg	4580	4580	0.1	0% - 50%			
ES2136018-009	Anonymous	EK072: Phosphate Sorption Capacity		250	mg P sorbed/kg	2080	2060	1.4	No Limit			

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)				
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EA010: Conductivity (1:5) (QCLot: 3949225)								
EA010: Electrical Conductivity @ 25°C		1	μS/cm	<1	1412 µS/cm	105	92.0	108
EA010: Conductivity (1:5) (QCLot: 3949227)								
EA010: Electrical Conductivity @ 25°C		1	µS/cm	<1	1412 µS/cm	105	92.0	108
ED006: Exchangeable Cations on Alkaline Soils(QCLot: 3954682)							
ED006: Exchangeable Calcium		0.2	meq/100g	<0.2	2.5 meq/100g	98.0	80.0	110
ED006: Exchangeable Magnesium		0.2	meq/100g	<0.2	4.17 meq/100g	101	80.0	110
ED006: Exchangeable Potassium		0.2	meq/100g	<0.2	1.28 meq/100g	103	80.0	110
ED006: Exchangeable Sodium		0.2	meq/100g	<0.2	2.17 meq/100g	97.2	80.0	110
ED006: Cation Exchange Capacity		0.2	meq/100g	<0.2				
ED006: Exchangeable Sodium Percent		0.2	%	<0.2				
ED007: Exchangeable Cations (QCLot: 3954685)								
ED007: Exchangeable Calcium		0.1	meq/100g	<0.1	1 meq/100g	96.0	75.8	120
ED007: Exchangeable Magnesium		0.1	meq/100g	<0.1	1.67 meq/100g	95.2	74.9	115
ED007: Exchangeable Potassium		0.1	meq/100g	<0.1	0.51 meq/100g	110	80.0	120
ED007: Exchangeable Sodium		0.1	meq/100g	<0.1	0.87 meq/100g	98.8	80.0	120
ED007: Cation Exchange Capacity		0.1	meq/100g	<0.1				
ED007: Exchangeable Sodium Percent		0.1	%	<0.1				

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

	QA/QC Compliance /	Assessment to assist with	n Quality Review	
Work Order	: EW2104213	Page	: 1 of 5	
Client		Laboratory	: Environmental Division NSW South Coast	
Contact	: Tanya Erofeev	Telephone	: 02 42253125	
Project	: 515 Crookwell Road, Kingsdale	Date Samples Received	: 07-Oct-2021	
Site	:	Issue Date	: 16-Oct-2021	
Sampler	: Client, Tanya Erofeev	No. of samples received	: 20	
Order number	:	No. of samples analysed	: 20	

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Outliers : Analysis Holding Time Compliance

Matrix: SOIL

Method		E	xtraction / Preparation		Analysis			
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days	
				overdue			overdue	
EA002: pH 1:5 (Soils)								
Soil Glass Jar - Unpreserved								
CR-BH001/1,	CR-BH001/2,				13-Oct-2021	12-Oct-2021	1	
CR-BH001/3,	CR-BH002/1,							
CR-BH002/2,	CR-BH0B/1,							
CR-BH0B/2,	CR-BH0B/3,							
CR-BH0C/1,	CR-BH0C/2,							
CR-BH0C/3,	CR-BH0D/1,							
CR-BH0D/2,	CR-BH0E/1,							
CR-BH0E/2,	CR-BH0E/3,							
CR-BH0F/1,	CR-BH0F/2,							
CR-BH0G/1								

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL			Evaluation: × = Holding time breach ; ✓ = With						
Method		Sample Date	Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EA002: pH 1:5 (Soils)									
Soil Glass Jar - Unpreserved (EA002	2)								
CR-BH001/1,	CR-BH001/2,	06-Oct-2021	11-Oct-2021	13-Oct-2021	1	13-Oct-2021	12-Oct-2021	×	
CR-BH001/3,	CR-BH002/1,								
CR-BH002/2,	CR-BH0B/1,								
CR-BH0B/2,	CR-BH0B/3,								
CR-BH0C/1,	CR-BH0C/2,								
CR-BH0C/3,	CR-BH0D/1,								
CR-BH0D/2,	CR-BH0E/1,								
CR-BH0E/2,	CR-BH0E/3,								
CR-BH0F/1,	CR-BH0F/2,								
CR-BH0G/1									

Page	: 3 of 5
Work Order	: EW2104213
Client	: CIVPLAN
Project	: 515 Crookwell Road, Kingsdale

Matrix: SOIL				Evaluation	on: × = Holding time breach ; ✓ = Within holding time				
Method		Sample Date	• E	xtraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EA010: Conductivity (1:5)									
Soil Glass Jar - Unpreserved (EA010)									
CR-BH001/1,	CR-BH001/2,	06-Oct-202	11-Oct-2021	13-Oct-2021	 ✓ 	13-Oct-2021	08-Nov-2021	✓	
CR-BH001/3,	CR-BH002/1,								
CR-BH002/2,	CR-BH0B/1,								
CR-BH0B/2,	CR-BH0B/3,								
CR-BH0C/1,	CR-BH0C/2,								
CR-BH0C/3,	CR-BH0D/1,								
CR-BH0D/2,	CR-BH0E/1,								
CR-BH0E/2,	CR-BH0E/3,								
CR-BH0F/1,	CR-BH0F/2,								
CR-BH0G/1	,								
ED006: Exchangeable Cations on Alkaline Soils	s								
Soil Glass Jar - Unpreserved (ED006)									
CR-BH0B/2,	CR-BH0B/3,	06-Oct-202	14-Oct-2021	03-Nov-2021	1	14-Oct-2021	03-Nov-2021	 ✓ 	
CR-BH0C/2,	CR-BH0D/2								
ED007: Exchangeable Cations									
Soil Glass Jar - Unpreserved (ED007)									
CR-BH001/1,	CR-BH001/2,	06-Oct-202	14-Oct-2021	03-Nov-2021		14-Oct-2021	03-Nov-2021	 ✓ 	
CR-BH002/1,	CR-BH002/2,								
CR-BH0B/1,	CR-BH0C/1,								
CR-BH0D/1,	CR-BH0E/1,								
CR-BH0E/2,	CR-BH0F/1,								
CR-BH0F/2,	CR-BH0G/1								
EK072: Phosphate Sorption Capacity									
Soil Glass Jar - Unpreserved (EK072)									
CR-BH0B/2,	CR-BH0C/2,	06-Oct-202				11-Oct-2021	04-Apr-2022	 ✓ 	
CR-BH0D/2,	CR-BH0E/2								

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluation: × = Quality Control frequency not within specification ; ✓ = Quality Control frequency within specificati					
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification		
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation			
Laboratory Duplicates (DUP)									
Electrical Conductivity (1:5)	EA010	3	21	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard		
Exchangeable Cations	ED007	2	13	15.38	10.00	✓	NEPM 2013 B3 & ALS QC Standard		
Exchangeable Cations on Alkaline Soils	ED006	1	4	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard		
P Sorption Index & P Sorption Capacity	EK072	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard		
pH (1:5)	EA002	3	22	13.64	10.00	✓	NEPM 2013 B3 & ALS QC Standard		
Laboratory Control Samples (LCS)									
Electrical Conductivity (1:5)	EA010	2	21	9.52	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Exchangeable Cations	ED007	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Exchangeable Cations on Alkaline Soils	ED006	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Method Blanks (MB)									
Electrical Conductivity (1:5)	EA010	2	21	9.52	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Exchangeable Cations	ED007	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Exchangeable Cations on Alkaline Soils	ED006	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH (1:5)	EA002	SOIL	In house: Referenced to Rayment and Lyons 4A1 and APHA 4500H+. pH is determined on soil samples after a 1:5 soil/water leach. This method is compliant with NEPM Schedule B(3).
Electrical Conductivity (1:5)	EA010	SOIL	In house: Referenced to Rayment and Lyons 3A1 and APHA 2510. Conductivity is determined on soil samples using a 1:5 soil/water leach. This method is compliant with NEPM Schedule B(3).
Exchangeable Cations on Alkaline Soils	ED006	SOIL	In house: Referenced to Soil Survey Test Method C5. Soluble salts are removed from the sample prior to analysis. Cations are exchanged from the sample by contact with alcoholic ammonium chloride at pH 8.5. They are then quantitated in the final solution by ICPAES and reported as meq/100g of original soil.
Exchangeable Cations	ED007	SOIL	In house: Referenced to Rayment & Lyons Method 15A1. Cations are exchanged from the sample by contact with Ammonium Chloride. They are then quantitated in the final solution by ICPAES and reported as meq/100g of original soil. This method is compliant with NEPM Schedule B(3).
P Sorption Index & P Sorption Capacity	EK072	SOIL	In house: Referenced to Rayment & Lyons Method 9H1 & 9I1 Soil is bought to equilibrium with a solution of P at known concentration. P absorbed, released is determined by FIA analysis of the final solution.
Preparation Methods	Method	Matrix	Method Descriptions
Exchangeable Cations Preparation Method (Alkaline Soils)	ED006PR	SOIL	In house: Referenced to Rayment and Lyons method 15C1.
Exchangeable Cations Preparation Method	ED007PR	SOIL	In house: Referenced to Rayment & Lyons method 15A1. A 1M NH4CI extraction by end over end tumbling at a ratio of 1:20. There is no pretreatment for soluble salts. Extracts can be run by ICP for cations.
1:5 solid / water leach for soluble analytes	EN34	SOIL	10 g of soil is mixed with 50 mL of reagent grade water and tumbled end over end for 1 hour. Water soluble salts are leached from the soil by the continuous suspension. Samples are settled and the water filtered off for analysis.

CHAIN OF CUSTODY

CHAIN OF CUSTODY

ALS Laboratory: please tick →

List Constraints of Constraints (Constraints of Constraints o

Molbourne: 2-4 Westali Rd, Springvale VIC 3171 2h:03 6549 9600 E: samples melbourne@aisenvic.com Adelaide: 2-1 Burma Rd. Popraka SA 5095 Ph: 08 8359 0890 E;adelaide@alsenviro.com

El Perth: 10 Hod Way, Malana WA 6090 Ph: 08 9209 7655 E: samples.perth@alsenviro.com Launceston: 27 Wellington St. Launceston TAS 7250 Ph: 03 6331 2158 E: launceston@alsenviro.com

			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · ·												
CLIENT:	CivPlan TURNAROUND REQUIREME (Standard TAT may be longer for s				Standard TAT (List due date):							FOR LABORATORY USE ONLY (Circle)				
OFFICE:		-	e.g., Ultra Tra	ce Organics)	Non Stand	ard or urger	nt TAT (Lis	t due date):				Custody Seel Infact? Yes No N// Free ice / trozen ice bricks present upon				N/A.
PROJECT:	515 Crookwall Road, Kingsdale		ALS QUOT	E NO.:				COC SEQ		BER (Circi	ie) 	receipt?	Oceania Transmission	Yes	No	N⁄A.
ORDER NUMBER:	Tanya Erofeey	CONTACT	PH: 041577						34		97 87	Mangom a	sample Temperature on	20 1	C	
SAMPLER:	Tanya Erofeev	SAMPLER	MOBILE: 04	16777210	RELINQUISHE	D BY:	RE		· · ·		REL	NOUISH	ED BY:	RECEIVED BY:		
COC emailed to ALS? (YES / NO)	EDD FOR	MAT (or defa	ult);	Tanya Erofeev		A;	1A	2	>	1					
Email Reports to (will d	efault to PM if no other addresses are list	ed): tanya.erofeev@civplar	h.com.au		DATE/TIME:		BA BA	TETIME	D C		DAT	E/TIME:		DATE/TIME:		
Email invoice to (will de	fault to PM if no other addresses are liste	id): info@civplan.com.au			7.10.21		0	7/10/2	1 15	500			·			
COMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOSAL:															
ALS USE ONLY	SAMPLE MATRIX: Soli	DETAILS id(S) Water(W)		CONTAINER INFORM	MATION	ANALYS When	SIS REQU	IRED Includi	ing SUITES Totel (unfiltered i	(NB. Suite C cottie required)	odes mus or Dissolv	st be listed ed (field fiter	to attract suite price) red bottle required).	Additional In	formation	
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES	Soil pH	Conductivity EC	Exchangeable Cations	Phospate Sorption Capacity	Soluble Salts				Comments on likely cont diutions, or samples requ analysis etc.	minant level Iring specific	is, : QC
(CR-EHOO1/1	6.10.21	s			1	1	1						······································		-
2	CR-BHOO1/2	6.10.21	S			1)	11								
3	CR-B11001/3	6.10.21	s			1	1									
4	CR-BH002/1	6.10.21	s			(1	1								
5	CR-BH00212	6.10.21	-8			1	1	,	-	1	-					
à	CR-BHO6/1	6.10.21	S			i)	1		-						
7	CR-5110B/2	6.10.21	5			}	i	1	1							
X	CR-BHOBIS	6.10.21	Ş			Ŋ	1	1						·····		
9	CR-BHOCH	6.10.21	5	• •• · · · · · · · · · · · · · · · · ·		i	1	1					Environm	ental Divisior		
10	CR-BHOC/2	6.10.21	ŝ			İ	1	1	ł				Wollongo Work Or	ng der Reference	-	
1	CR-BHOC'S	6.10.21	5	· · · · · · · · · · · · · · · · · · ·		1	1						EW	210421	3 "	
12	CR-CHOD/i	6.10.21	ş			1	1	1			-			O MILLAL MILLON . MOIN AN	+	
13	CR-BHODIZ	6.10.21	s			1)	1	1		1				- 	
14	CR-RHOEII	6.10.21	s	·····		1	1	;			1					
15	CR-BHOE12	6.10.21	S	······································		;)	1							-	
				ο Γ ΤΟΙΛΙ		15	15	13	4	<u> </u>			Felephone 102	42257125	-	
Water Container Codes: 1 V = VOA Vial HCI Preserver	² = Unpreserved Plastic; N = Nitric Preserved F d; VB = VOA Vial Sodium Bisulphate Preservet	Plastic; ORC = Nitric Preserved d; VS = VOA Vial Sutfuric Preser	IORC; SH = Si ved; AV = Airfr	odium Hydroxide/Cd Preserved; 3 sight Unpreserved Vial SG = Sull	S = Sodium Hydro: funic Preserved A	xide Preserv mber Glass;	ved Plastic; H = HCl p	AG = Amber G reserved Plasti	ass Unpreser o; HS = HCl ;	ved; AP - Air preserved Sp	freight Un	preserved	Plastic - Sulfuric Preserved Plas	stic: F = Formaldehyde Pr	eserved Gla	155;

V = VOA Vial HCI Preserved; VB = VOA Vial Sodium Sisulphate Preserved; VS = VOA Vial Sulfuric Preserved; AV = Ainfreight Unpreserved Vial SG = 3 IZ = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles; ST = Storie Bottle; ASS = Plastic Bag for Acid Sulphate Solis; B = Unpreserved Bag.

CHAIN OF CUSTOD Y ALS Laboratory: please tick → DT kn constants R

24-24-7 Crootpark Rd, Omtariuta NGN 2176 2013 Elstemplicacytina (Oristonica com 27 Americanita S Rd, Joyner Rd, Warribrak NSW 2304 24-24-72 M33 Europita naviastige@stonica com

Brisbane; 32 Shand St, Stafford QLD 4053
Ph:07 3243 7222 Examples.brisbane@alserwiro.com
 Townsviller: 14-15 Desma Ct, Bothe QLD 4818
Ph:07 4795 0600 E: bernadle environment/gbareniro.com

Metibourne: 2-4 Westall Rd, Springvale VIC 3171
Ph:03 8549 9500 E: samples.metbourne@alserwiro.com
 Adetaido: 2-1 Birma Rd, Sovaraka SA 5095
Ph: 08 8359 0680 E:adetaide:@alserwiro.com

□ Perth: 10 Hod Way, Malaga WA 6090 Ph: 08 9209 7655 E: samples pertiti@alsenviro.com □ Launceston: 27 Welington St, Launceston TAS 7250 Ph: 03 6331 2158 E: launceston@alsenviro.com

CLIENT: OFFICE: PROJECT: ORDER NUMBER: PROJECT MANAGER SAMPLER: COC emailed to ALS' Email Reports to (will	UND REQUIREMENTS : T may be longer for some tests (ce Organics) TE NO.: 7210 M16777210 ult): au	Standard Non Stand RELINQUISHE Tanya Erofeet DATE/TIME: T. 10, 12	TAT (List du lard or ungen ED BY:	e date): nt TAT (L c	lst due c CO COC: 1 OF: 1 RECEIVE	date):)c SEQU 2 2 ED BY: ME:	ENCE NUME 3 4 3 4	HER (Circi 5 E 5 E	e) 7 REL DAT	FOR LAB Custody Se Free Ice / fm receipt? Rendom Se Other comm INQUISHED E/TIME:	ORATORY USE Of al Intact? azen ice bricks prese/ mple Temperature on sent: D BY:	NLY (Circle) Yes tt upon Yes Receipt: RECEIVED BY: DATE/TIME:	No No C	N/A N/A			
COMMENTS/SPECIAL	L HANDLING/STORAGE OR DISPO	SAL:												·_· _·			
ALS USE ONLY	SAMP MATRIX: 5	LE DETAILS Solid(S) Water(W)	······	CONTAINER INFORM	ANALYSIS REQUIRED Including SL Where Metals are required, specify Total (ur				Iding SUITES (NB. Suite Codes must be listed to attract suite				attract suite price) I bottle required),	tce) Additional Information			
LABID SAMPLEID DATE / TIME MAT				TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES	Soil pH	Conductivity EC		Exchangeable Cations	Phospate Sorption Capacity	Soluble Saits				Comments on likely conta diutions, or samples requi analysis etc.	minant level ring specific	5, ; QC
16	CR-BHOE/3	6.10.21	Ş			i)										
11	CR-BHOF/i	6.10.21	S			1	1	1	1								
18	CR-BHOF/2	6.10.21	s			1	1	1	;	60.00							
10	CR-BHOGH	6.10.21	\$,	,		;				ļ				
212	CR-BHAG12	6.10.21	°s			,	1	1		Sector 1	<u>+</u>				······································		
			5				- -		<u> </u>				ŀ				·
			ŝ	<u> </u>			+		<u></u> t						······		
		1	s							· ·····							<u>-</u>
ļ <u> </u>		ļ	5														
	<u></u>						<u> </u>										.
							<u> </u>	<u> </u>									
			8									_					
			\$,			_					
ļ			5								 	_					
			\$												<u> </u>		
			S		1		ļ			··· ·· ·· ··	ļ						
	The second second			ion in the second s		5	$\overline{5}$	4	4								
Water Container Codes: V = VOA Viai HCI Preser	P = Unpreserved Plastic; N = Nitric Press ved; VB = VOA Vial Sodium Bisuiphate Pre- d Cottle; E = EDTA Preserved Bottle; ST	erved Plastic; ORC = Nitric Plastic; ORC = Nitric Plastic; ORC = Nitric Plastic; Served; VS = VOA Vial Sulfur	reserved ORC; ic Preserved; AV	SH = Sodium Hydroxide/Cd Press / = Ainfreight Unpreserved Vial SG uilabate Solis: B = Unpreserved B	irved; S = Sodiun I = Sulfunc Prese	n Hydroxide i rved Amber	reserved Glass; H	Plastic; A I = HCI pr	AG = Am reserved	oer Glass Un Plastic; HS =	preserved; / HCI preser	VP - Airfn ved Spe	eight Unprese ciation bottle;	rved Plastic SP = Sulfuric Preserv	ed Plastic; F = Formaideh	vde Preserv	red Glas

Appendix B – Borehole Logs

Client:	Alima	co Pty Ltd					Latitude	ehole No:				
Project:	515 Cı	rookwell R	d, Kin	gsdale,	NSV	V	Longitude	Geology:	Veg	etation		
Learned Dur			-f		T	Chautadi	149.703942	Report Section 2.1	Tat	Grass		
Logged By:		Tanya Ero	Jieev		e	5tarteu: 6/10	6/10/2021 Hand Auger					
Auger Opera	ator:	Civ	/Plan		Dat	Completed:	72021	Groundwater Depth:	AHD	D RL Surface:		
0 1						. 6/10)/2021	N/A		-		
					Lit	hological [
	ince				Soil	Group Name: m	_	>				
	sista	<u>ـ</u>			othe	r descriptors				tion	nsit	
	Re: n)	nbe	er							ipuq	De	
eet	tion 0.1r	Nur	wat	Log	Rock	Description: m	odifierm color h	ardness/degree of concentration bec	lding	e Cc	incy	
th (t	etra ws/	ple	pur	hic	and	joint characteris	stics, solutions, vo	id conditions.	amb	stur	siste	
Depi	Pen(Blo	Sam	Grou	Grap						Moi	Cons	
		BH001/1		1	тор	SOIL: Silty CL	AY, medium bro	own, low plasticity,		Slightly	Soft	
		BI1001/1			gras	sland roots				moist		
											C ()	
					CLA	Y LOAM: Redo	dish brown, ligh	t clay loam		Slightly	Soft	
					med	dium plasticity	/			moist		
0.5 —			ered		MEI	DIUM CLAY: Li	ght brown, me	dium clay, high plasticity		Slightly	Firm	
		BH001/2	unte				8			moist		
			ncol									
			ot E									
			z		MEI	DIUM CLAY: Li	ght brown, mee	dium clay, high plasticity		Slightly	Stiff	
					wea	thered gravel	inclusions			moist		
1.0												
		BH001/3										
				<u>~~~~</u>	Bor	ehole termina	ted at 1.2m dei	oth.				
								r -				
CivP	lar	า		•	•			Borehole Log: S	Shee	t 1 of 8		

Client:	Alima	co Pty Ltd			Latitude Logged By: Bore			ehole No: BHOC			
Project:	515 Cı	rookwell R	d, Kin	gsdale,	NSV	ISW Longitude Geology: Vege			getation		
Logged By:		Tanya Er	foov			149.7016 Report Section 2.1			Grass		
LUggeu Dy.		Tanya Lit	JIEEV		e	6/10)/2021	Hand Auger	101	1.2m	
Auger Opera	ator:	Civ	/Plan		Dai	Completed:		Groundwater Depth:	AHI	D RL Surfa	ce:
				1		6/10)/2021	N/A		-	
	0				Lit	hological D	Description:				
	ance				Soil	Group Name: m	nodifier, color, mo	pisture, density/consistency, grain si	ze,		Ъ.
	sist	5			othe	r descriptors				itio	insit
æ	n Re m)	mbe	er	50						puo	y De
feet	itior (0.1	nN	wat	, Log	Roci	Description: m	odifierm color, h	ardness/degree of concentration, be	dding	re C	enci
th (etra ws/	ple	oun	phic	and	joint characteris	stics, solutions, vo	oid conditions.		istu	Isist
Dep	Pen (Blc	San	Gro	Gra						Mo	Con
		BH00C/1			TOP	SOIL: Silty CLA	AY, medium bro	own, low plasticity,		Slightly	Soft
		511000,1			gras	sland roots				moist	
					CLA	Y LOAM: Light	t brown, light c	lay loam, medium plasticity		Slightly	Soft
					wea	ithered gravel	inclusions			moist	
0.5 —			red								
		BH00C/2	inte								
			JCOL		LIGI	HT CLAY: light	brown. light cla	av. medium plasticity		Slightly	Firm
			ot Ei		wea	thered gravel	inclusions	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		moist	
			ž			0					
		BH00C/3			LIGI	HT CLAY: ligth	t brown, light c	lay, high plasticity		Slightly	Stiff
		511000/5								moist	
10											
					Bor	ahola tormina	tad at 1 2m da	nth			
					501			рин.			
CivP	lar	า						Borehole Log:	Shee	et 4 of 8	
		I						-			

Client:	Alima	co Pty Ltd					Latitude	Logged By: Borehole No:			
Project:	515 Ci	rookwell R	d, Kin	gsdale,	NSV	V	Longitude	Geology:	Veg	etation	
						149.7015 Report Section 2.1			Grass		
Logged By:		Tanya Ero	ofeev			Started:		Equipment:	Tota	al Depth:	
Augar Ogar		Civ	Dlan		ate	6/1(Completed	0/2021	Hand Auger	A I 15	0.5m	
Auger Oper	ator:	CN	Pidn			Completed: 6/10	1/2021	Groundwater Deptn: N/A	AHL	J KL SUITA	ce:
					Lit	hological E	Description:		1		
	JCe				Co:I	Crown Normour	•	sistura dancitu/consistanau arain siza			
	star				othe	r descriptors	hodifier, color, mo	Disture, density/consistency, grain size	2,	ion	sity
	Resi	oer								diti	Jen
et)	Jn F 1m)	nm	ater	ട്ട						Con	cy [
(fe	ratio s/0.	e	мр	icL	Roc	Description: m	nodifierm color, h	ardness/degree of concentration, bec	lding	ure	ten
pth	neti ows	Idu	uno	hqe	and	joint characteris	stics, solutions, vo	bid conditions.		oistı	nsis
De	Pel (Bl	Saı	Gr	ษั						й	Co
		BH00D/1			TOP	SOIL: Dark br	own loam, low	plasticity,		Slightly	Soft
		-			gras	sland roots				moist	
					HEA	HEAVY CLAY: dark brown/black, heavy clay, medium plasticity				Slightly	Stiff
										moist	
0.5 —			red	000000	Por	obolo tormina	tod at 0 5m da	nth			
		BH00D/2	unte		DOI		iteu at 0.5in ue	ptil.			
			loor								
			ot Er								
			ž								
1.0											
CivP	lar	า						Borehole Log: S	Shee	t 5 of 8	
		•									

Client:	Alima	co Pty Ltd			Latitude Logged By: Bore			ehole No: BHOE			
Project:	515 Cı	ookwell R	d, Kin	gsdale,	NSV	ISW Longitude Geology: Vege			getation		
Logged By:		Tanya Fro	ofeev			Started [.]	149.699	Report Section 2.1	Tot	al Denth	
205500 09.		Tunyu Er			te	6/10)/2021	Hand Auger	100	1.2m	
Auger Opera	ator:	Civ	/Plan		Da	Completed:		Groundwater Depth:	AH	D RL Surfa	ce:
			1	1		6/10)/2021	N/A		-	1
	0				Lit	hological D	Description:				
	ance				Soil	Group Name: m	nodifier, color, mo	pisture, density/consistency, grain	size,	- -	×.
	sist	ır			othe	r descriptors				itio	insit
Ŧ	n Re m)	mbe	er	50						puo	y De
feet	itior (0.1	Nu	wat	, Log	Rock	Description: m	odifierm color, h	ardness/degree of concentration,	pedding	re C	enci
oth (etra ws/	alqr	pun	phic	and	joint characteris	stics, solutions, vo	oid conditions.		istu	sist
Dep	Pen (Blc	San	Gro	Gra						Mo	Con
		BHOOE/1			тор	SOIL: Silty sar	nd, light brown,	low plasticity,		Slightly	Soft
		BHOOL/1			gras	sland roots				moist	
				/////							
					CLA	Y LOAM: Light	t brown, light c	lay loam, medium plasticity		Slightly	Soft
					wea	thered gravel	inclusions			moist	
0.5 —			ed								
		BH00E/2	nter								
			icou			JT CLAV. light	brown light d	av modium plasticity		Slightly	Firm
			t En			thered gravel	inclusions	ay, medium plasticity		moist	
			N		wcc		liciusions			moise	
					LIGH	HT CLAY: ligth	t brown, light c	lay, high plasticity		Slightly	Stiff
		BH00E/3								moist	
10											
1.0											
					Bor	ehole termina	ted at 1.2m de	pth.			
CivP	lar	า		•				Borehole Log	g: Shee	et 6 of 8	

Client:	Alima	co Pty Ltd				Latitude Logged By: Bore			ehole No: BHOE		
Project:	515 Cr	ookwell R	d, Kin	gsdale,	NSV	NSW Longitude Geology: Vege			getation		
Logged By:		Tanya Fr	ofeev			149.7015 Report Section 2.1			Grass al Denth		
Logged by.		Tullyu El	JICCV		te	6/10)/2021	Hand Auger		0.65m	1
Auger Opera	ator:	Civ	/Plan		Da	Completed:		Groundwater Depth:	AH	D RL Surfa	ce:
				1		6/10	0/2021	N/A		-	
	e				Lit	hological [Description:				
	tanc				Soil	Group Name: m	nodifier, color, mo	pisture, density/consistency, grain s	ize,	Ę	ty
	esis	er			otne	r descriptors				ditic	ensi
et)	n R 1m)	qur	ater	80						Con	cy D
(fee	ratic s/0.	e N	мp	ic Lo	Rock	Description: m	nodifierm color, h	ardness/degree of concentration, b	edding	ure	ten
epth	enet Iow:	ldm	uno.	hqe'	and	joint characteris	stics, solutions, vo	Dia conditions.		oist	nsis
ð	Pe (B	Sa	ŋ	<u></u>						Σ	U U
		BH00F/1			ТОР	SOIL: Silty sar	nd, light brown,	low plasticity,		Slightly	Soft
					gras	siand roots				moist	
					LIGI	HT CLAY: light	brown. light cla	av. medium plasticity		Slightly	Soft
							,	-,,		moist	
0.5 —			σ								
		BH00F/2	tere								
			uno:								
			t Enc		_						
			Not		Bor	ehole termina	ited at 0.65m d	epth.			
1.0											
	•				<u> </u>						
CivP	lar	า						Borehole Log	: Shee	et 7 of 8	
<u> </u>											

Appendix C – Calculations

OWMP Calculator - Surface & Sub-Surface Irrigation

Client:	Alimaco Pty Ltd
Project:	515 Crookwell Rd, Kingsdale, NSW
Project No:	20027CC
DA No:	Planning Proposal
Date:	3-Mar-22

Where

Nitrogen Loading

Date:

Design Irrigation Rate (DIR) for Irrigation Systems (AS/NZS1547:2012)

Soil Category	5b	
Soil Texture	Light Clay	
Structure	Moderate	
Indicative Permeability	0.05-0.12	m/day
Drip Irrigation DIR	3.00	mm/day

Nutrient and Organic Matter Balance

The formula used to determine area requirements based on organic matter and nutrient loads is as follows: $A = C \times Q$

	L,	
А	=	land area (m²)
С	=	concentration of nutrient or BOD (mg/L)
Q	=	treated wastewater flow rate (L/d)

 $L_x = critical loading rate of nutrient or BOD (mg/m²/d)$

Nutrient Uptake Rates

с	20	mg/L	Generally between 20 and 30
0	900	L/dav	4 or more bedrooms / non-reticulated
N loss in soil	1	mg/dav	Could be up to 20%
		0,,	· · · · · · · · · · · · · · · · · · ·
L _n			
Crop Uptake	240	kg/ha/vr	Manaaed lawns
Adjusted	65 71	mg/m ² /day	Unit conversion
Adjusted	05.71	ing/in /uay	onit conversion
Irrigation area	274	m ²	Assuming no loss in soil (up to 20%)
ingution area	274	m	Assuming no loss in son (up to 20%)
Phoenhorus Loading			
r nosphorus coaung			
P Sorh canacity	1290	mg/kg	
Soil Depth	0.5	m	
Bulk Donsity	1500	ka/m^3	
Buik Density	1300	kg/III	
22010	9075	kg/na	
Amount of photoborus that	can be abcor	hod without I	eaching over EQ years
Amount of phosphorus that	call be absol	bed without i	eaching over 50 years
P Sorh Canacity	9675	kg/ha	
Predicted P Sorb	0.7	16/110	Ranges between 33% to 70%
P	6772 5	ka/ba	hanges between 55% to 76%
* absorbed	0772.5	Kg/11d	
	0.67725	kg/m ⁻	
A			
Amount of vegetation uptak	e over 50 yea	15	
1			

Hydraulic Loading - Nominated Area Method

A water balance is based on the following equation calculated on a monthly basis:

Design + Wastewater = Evapotranspiration + Percolation Precipitation Applied

Or **P + W = E T + B**

Good quality woodiand	70	23
Poor quality woodland	65	20
Lawn – fully managed (clippings removed)	240	30
Lawn – unmanaged	120	12
Improved pasture	280	24
Perennial pasture	99	11
Shrubs and some trees – fully managed	150	16
Shrubs and some trees – unmanaged	75	8

Table 14: Expected Quality of Wastewater after Treatment in an AWTS Concentration *

<30 mg/L

25 - 50 mg/L

10 - 15 mg/L

up to 104 cfu/100 mL

<30 cfu/100 mL

*Design figures might not be indicative of long-term operational characteristics

>2 mg/L <2 mg/L

Total Nitrogen (kg/ha/year)

Failure Indicator

>50 mg/L

>50 mg/L

not applicable

not applicable

not applicable

>100 cfu/100 mL

Total Phosphorus (kg/ha/year)

For **bulk density (g/cm³)**, apply the following values: Sandy soil – 1.8g/cm³ Intermediate – 1.5g/cm³ Clayey soil – 1.3g/cm³

Parameter

Suspended solids

Total phosphorus

Faecal coliforms

Disinfected effluent

Dissolved oxygen

Vegetation Type and all service P

Non-disinfected effluent Faecal coliforms

Total nitrogen

Biochemical oxygen demand <20 mg/L

Phosphorus sorption data in milligrams per kilogram (mg/kg) is converted to kilograms per hectare (kg/ha) using the following equation (see Appendix 1 for indicative bulk density values):

Psorp (kg/ha) = Psorp (mg/kg) x soil depth (m) x bulk density (kg/m³) x 0.01

Phosphorus Sorption Uptake Values

Soil Category	Texture	Structure	Acceptable Psorp* (mg/kg)
1	Gravels and sands	Structureless	50
2a	Sandy loams	Weak	100
2b	Sandy loams	Massive	100
3a	Loams	High / moderate	200
3b	Loams	Weak / massive	200
4a	Clay loams	High / moderate	400
4b	Clay loams	Weak	400
4c	Clay loams	Massive	400
5a	Light clays	Strong	500
5b	Light clays	Moderate	500
5c	Light clays	Weak / massive	500
<u>6a</u>	Med-heavy clays	Strong	600
6b	Med-heavy clays	Moderate	600
6C	Med-heavy clays	Weak / massive	600

REC	OMMENDE	T DESIGN IRRIGAT	ABLE M1 Ion Rate (Dir)	FOR IRRIGA	TION SYST	EMS		
Soil			Indicative	Design irrigation rate (DIR) (mm/day)				
Category (see Note 1)	texture	Structure	permeability (K _{sat}) (m/d)	Drip irrigation	Spray irrigation	LPED irrigation		
1	Gravels and sands	Structureless (massive)	> 3.0	5	E	(see Note 3)		
0	Sandy	Weakly structured	> 3.0	(see Note 2)	2	4		
2	loams	massive	1.4 - 3.0			-		
0	Loomo	High/ moderate structured	1.5 - 3.0	4	4	2.5		
3	5 Loams	Weakly structured or massive	0.5 - 1.5	(see Note 1)	-	5.5		
	4 Clay loams	High/ moderate structured	0.5 - 1.5	3.5				
4		Weakly structured	0.12 - 0.5	(see Note 1)	3.5	3		
		Massive	0.06 - 0.12	1				
		Strongly structured	0.12 - 0.5					
5	Light clays	Moderately structured	0.06 - 0.12	3 (see Note 1)	3	2.5 (see Note 4)		
		Weakly structured or massive	< 0.06					
		Strongly structured	0.06 - 0.5					
6	to heavy	Moderately structured	< 0.06	2 (see Note 2)	2	(see Note 3)		
	CidyG	Weakly structured or massive	< 0.06					
NOTES:								
1 For Categ depth of t	ory 3 to 5 soils	(loams to light clays), t rder of 150 – 250 mm o	the drip irrigation a f <i>in aitu</i> or importe	system needs to a good quality	be installed i topsoil) to slo	n an adequate w the soakage		

and assets with nutriew revenues. For Category 1, and 6 solis, the drip irrigation system has a depth of 100 – 150 mm in good quality topsoil (see CMI and M3.1). LPED irrigation is not adviced for Category 1 or Category 8 solis – drip irrigation of secondary effluent is the preferred irrigation method.

or Category 5 soils needs a minimum depth of 250 mm of good quality topsoil (se ao M5 a

TABLE H1 TYPICAL DOMESTIC WASTEWATER DESIGN FLOW ALLOWANCES - AUSTRALIA Typical wastewater design flows Source

Source	(L/person/day)								
Desidential exemises	On-site roof water tank supply	Reticulated water supply							
Residential premises	120	150							
Source: Australian Bureau of Statistics. Water Account 2004/2005. Chapter 7 Figure 7.3									

Monthly Water Balance to Determine Wet Weather Storage - Nominated Area Method

Design Wastewater Flow	Q	L/day	900													
Design Percolation Rate	R	mm/week	21													
Land Area	L	m²	411													
Parameter	Symbol	Formula	Unite	lanuary	February	March	April	Мау	lune	luly	August	Sentember	October	November	December	Total
Days in month	D	-	days	31	28	31	30	31	30	31	31	30	31	30	31	365
Precipitation	P	-	mm/month	61.9	60.7	55.6	44	40.7	53.1	40.8	52.5	48	52.5	62.6	62.8	635.2
Evaportation	E	-	mm/month	187	145	124	79	51	34	39	61	88	123	146	185	1262
Crop factor	С	-	-	0.8	0.8	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.8	0.8	0.8	-
Inputs																
Precipitation	Р	-	mm/month	61.9	60.7	55.6	44	40.7	53.1	40.8	52.5	48	52.5	62.6	62.8	635.2
Effluent Irrigation	W	(Q x D) / L	mm/month	67.9	61.3	67.9	65.7	67.9	65.7	67.9	67.9	65.7	67.9	65.7	67.9	799.3
Inputs		P + W	mm/month	129.8	122.0	123.5	109.7	108.6	118.8	108.7	120.4	113.7	120.4	128.3	130.7	1434.5
Outputs																
Evaportranspiration	ET	ExC	mm/month	149.6	116	86.8	55.3	35.7	23.8	27.3	42.7	61.6	98.4	116.8	148	962.0
Percolation	В	(R / 7) x D	mm/month	93.0	84.0	93.0	90.0	93.0	90.0	93.0	93.0	90.0	93.0	90.0	93.0	1095.0
Outputs		ET + B	mm/month	242.6	200.0	179.8	145.3	128.7	113.8	120.3	135.7	151.6	191.4	206.8	241.0	2057.0
Storage	S	(P + W) - (ET + B)	mm/month	-112.8	-78.0	-56.3	-35.6	-20.1	5.0	-11.6	-15.3	-37.9	-71.0	-78.5	-110.3	
Cumulative Storage	М	- '	mm	0.0	0.0	0.0	0.0	0.0	5.0	0.0	-15.3	-53.2	-124.2	-202.7	0.0	-
Storage	N	Lorgest M		-												
	v	Largest IVI		5	4											
		(V x L) / 1000	m	2.06												1
Land Area Zero Storage				154	181	225	267	317	445	351	335	261	201	187	157	

411 m² Wet Weather Storage

l for Zero Storage 445 m²

Appendix D – Disposal System Standard Drawings

Standard Drawing 10A – Upslope Diversion Drain

(not to scale)

Standard Drawing 13B – Subsurface Effluent Irrigation

(not to scale)

Standard Drawing 13C – Raised Subsurface Irrigation Bed

(not to scale)